

Race of Doom

Team 8

Wesley Jansen, Elizabeth Schmitt, Alex Crandall, Lalith Vattyam, Ben Towle Advisor: Dr. Bigelow

Project Overview

- Creating an autonomous vehicle that can receive data from each group to allow for a "race"
- Get through different, realworld obstacles successfully

- Obstacles include
 - People crossing the street
 - Stop signs
 - Bad guys popping up that need to be shot
 - Construction
 - Walls

Artifact 1: Pros/Cons List

- Key highlights include:
- User Safety Concerns
- Cost/Pricing
- Embracing Laziness

Human/User Needs

- Although our model is a small scale version of an autonomous vehicle we aim to improve the following:
- Smooth navigation through obstacles allowing for user comfort
- Developing a vehicle that can reduce safety risks and provide security to the passengers.

Room for Improvement:

- Through assembly and testing we can fine-tune the vehicle to adapt to these needs more efficiently

Artifact 2: Journey Map

Economic Improvements

- Many clients often feel that autonomous cars are too expensive when looking for a more attractive or efficient model
- For our development, we have used relatively inexpensive components to allow for small-scale tests without sacrificing expenses
- Implementing these components into a large scale can allow for a potentially cheaper solution to the common issues clients have with expenses

Artifact 3: Technical Complexity Analysis

Technical Analysis

- The previous slide shows our layout for both the hardware and software components
- While our software is to be developed later in the course, the broad scale of connectivity has been detailed in the document
- Our expertise has been shown through the connectivity of the hardware we plan to implement through the use of the Raspberry pi microcontroller

Thank You!